Перевод: со всех языков на все языки

со всех языков на все языки

Mechanical, pneumatic and hydraulic engineering

  • 1 Mechanical, pneumatic and hydraulic engineering

    [br]
    Clement, Joseph
    Du Shi
    Du Yu
    Gongshu Pan
    Li Bing
    Ma Jun
    Murdock, William
    Somerset, Edward

    Biographical history of technology > Mechanical, pneumatic and hydraulic engineering

  • 2 Ellington, Edward Bayzard

    [br]
    b. 2 August 1845 London, England
    d. 10 November 1914 London, England
    [br]
    English hydraulic engineer who developed a direct-acting hydraulic lift.
    [br]
    Ellington was educated at Denmark Hill Grammar School, London, after which he became articled to John Penn of Greenwich. He stayed there until 1868, working latterly in the drawing office after a period of erecting plant and attending trials on board ship. For some twelve months he superintended the erection of Glengall Wharf, Old Kent Road, and the machinery used therein.
    In 1869 he went into partnership with Bryan Johnson of Chester, the company being known as Johnson \& Ellington, manufacturing mining and milling machinery. Under Ellington's influence, the firm specialized in the manufacture of hydraulic machinery. In 1874 the company acquired the right to manufacture the Brotherhood three-cylinder hydraulic engine; the company became the Hydraulic Engineering Company Ltd of Chester. Ellington developed a direct-acting hydraulic lift with a special balance arrangement that was smooth-acting and economical in water. He described the lift in a paper that was read to the Institution of Mechanical Engineers (IMechE) in 1882.
    Soon after Ellington joined the Chester firm, an Act of Parliament was passed, mainly due to his efforts, for the distribution of water under high pressure for the working of passenger and goods lifts and other hydraulic machinery in large towns. In 1872 he initiated the first hydraulic mains company at Hull, thus proving the practicability of the system of a high-pressure water-mains supply. Ellington remained as engineer to the Hull company until he was appointed a director in 1875. He was general manager and engineer of the General Hydraulic Power Company, which operated in London and had subsidiaries in Liverpool (opened in 1889), Manchester (1894) and Glasgow (1895). He maintained an interest in all these companies, as general manager and engineer, until his death.
    In 1895 he read another paper, "On hydraulic power in towns", to the Institution of Mechanical Engineers. In 1911 he became President of the IMechE; his Presidential Address was on the education of young engineers. In 1913 he delivered the Thomas Hawksley Lecture on "Water as a mechanical agent". He was Chairman of the Building Committee during the extension of the Institution's headquarters. Ellington was also a Member of Council of the Institution of Civil Engineers, a member of the Société des Ingé-nieurs Civils de France and a Governor of Imperial College of Science and Technology.
    [br]
    Principal Honours and Distinctions
    Member of the Institution of Mechanical Engineers 1875; Member of Council 1898– 1903; President 1911–12.
    IMcN

    Biographical history of technology > Ellington, Edward Bayzard

  • 3 Guest, James John

    [br]
    b. 24 July 1866 Handsworth, Birmingham, England
    d. 11 June 1956 Virginia Water, Surrey, England
    [br]
    English mechanical engineer, engineering teacher and researcher.
    [br]
    James John Guest was educated at Marlborough in 1880–4 and at Trinity College, Cambridge, graduating as fifth wrangler in 1888. He received practical training in several workshops and spent two years in postgraduate work at the Engineering Department of Cambridge University. After working as a draughtsman in the machine-tool, hydraulic and crane departments of Tangyes Ltd at Birmingham, he was appointed in 1896 Assistant Professor of Engineering at McGill University in Canada. After a short time he moved to the Polytechnic Institute at Worcester, Massachusetts, where he was for three years Professor of Mechanical Engineering and Head of the Engineering Department. In 1899 he returned to Britain and set up as a consulting engineer in Birmingham, being a partner in James J.Guest \& Co. For the next fifteen years he combined this work with research on grinding phenomena. He also developed a theory of grinding which he first published in a paper at the British Association for the Advancement of Science in 1914 and elaborated in a paper to the Institution of Mechanical Engineers and in his book Grinding Machinery (1915). During the First World War, in 1916–17, he was in charge of inspection in the Staffordshire and Shropshire Area, Ministry of Munitions. In 1917 he returned to teaching as Reader in Graphics and Structural Engineering at University College London. His final appointment was about 1923 as Professor of Mechanical and Electrical Engineering, Artillery College, Woolwich, which later became the Military College of Science.
    He carried out research on the strength of materials and contributed many articles on the subject to the technical press. He originated Guest's Law for a criterion of failure of materials under combined stresses, first published in 1900. He was a Member of the Institution of Mechanical Engineers in 1900–6 and from 1919 and contributed to their proceedings in many discussions and two major papers.
    [br]
    Bibliography
    Of many publications by Guest, the most important are: 1900, "Ductile materials under combined stress", Proceedings of the Physical Society 17:202.
    1915, Grinding Machinery, London.
    1915, "Theory of grinding, with reference to the selection of speeds in plain and internal work", Proceedings of the Institution of Mechanical Engineers 89:543.
    1917. "Torsional hysteresis of mild steel", Proceedings of the Royal Society A93:313.
    1918. with F.C.Lea, "Curved beams", Proceedings of the Royal Society A95:1. 1930, "Effects of rapidly acting stress", Proceedings of the Institution of Mechanical
    Engineers 119:1,273.
    RTS

    Biographical history of technology > Guest, James John

  • 4 Alden, George I.

    [br]
    b. 22 April 1843 Templeton, Massachusetts, USA
    d. 13 September 1926 Princeton, Massachusetts, USA
    [br]
    American mechanical engineer and professor of engineering.
    [br]
    From 1868 to 1896 George Alden was head of the steam and mechanical engineering departments at the Worcester Polytechnic Institute, Worcester, Massachusetts. He made a donation in 1910 to establish a hydraulic laboratory at the Institute, and later a further donation for an extension of the laboratory which was completed in 1925. He was Chairman of the Board of Norton (Abrasives) Company and made a significant contribution to the theory of grinding in his paper in 1914 to the American Society of Mechanical Engineers. He was a member of that society from 1880, the year of its foundation, and took an active part in its proceedings.
    [br]
    Principal Honours and Distinctions
    Vice-President, American Society of Mechanical Engineers 1891–3.
    Bibliography
    1914, "Operation of grinding wheels in machine grinding", Transactions of the American Society of Mechanical Engineers 36:451–60.
    Further Reading
    For a description of the Alden Hydraulic Laboratory, see Mechanical Engineering, June 1926: 634–5.
    RTS

    Biographical history of technology > Alden, George I.

  • 5 Smeaton, John

    [br]
    b. 8 June 1724 Austhorpe, near Leeds, Yorkshire, England
    d. 28 October 1792 Austhorpe, near Leeds, Yorkshire, England
    [br]
    English mechanical and civil engineer.
    [br]
    As a boy, Smeaton showed mechanical ability, making for himself a number of tools and models. This practical skill was backed by a sound education, probably at Leeds Grammar School. At the age of 16 he entered his father's office; he seemed set to follow his father's profession in the law. In 1742 he went to London to continue his legal studies, but he preferred instead, with his father's reluctant permission, to set up as a scientific instrument maker and dealer and opened a shop of his own in 1748. About this time he began attending meetings of the Royal Society and presented several papers on instruments and mechanical subjects, being elected a Fellow in 1753. His interests were turning towards engineering but were informed by scientific principles grounded in careful and accurate observation.
    In 1755 the second Eddystone lighthouse, on a reef some 14 miles (23 km) off the English coast at Plymouth, was destroyed by fire. The President of the Royal Society was consulted as to a suitable engineer to undertake the task of constructing a new one, and he unhesitatingly suggested Smeaton. Work began in 1756 and was completed in three years to produce the first great wave-swept stone lighthouse. It was constructed of Portland stone blocks, shaped and pegged both together and to the base rock, and bonded by hydraulic cement, scientifically developed by Smeaton. It withstood the storms of the English Channel for over a century, but by 1876 erosion of the rock had weakened the structure and a replacement had to be built. The upper portion of Smeaton's lighthouse was re-erected on a suitable base on Plymouth Hoe, leaving the original base portion on the reef as a memorial to the engineer.
    The Eddystone lighthouse made Smeaton's reputation and from then on he was constantly in demand as a consultant in all kinds of engineering projects. He carried out a number himself, notably the 38 mile (61 km) long Forth and Clyde canal with thirty-nine locks, begun in 1768 but for financial reasons not completed until 1790. In 1774 he took charge of the Ramsgate Harbour works.
    On the mechanical side, Smeaton undertook a systematic study of water-and windmills, to determine the design and construction to achieve the greatest power output. This work issued forth as the paper "An experimental enquiry concerning the natural powers of water and wind to turn mills" and exerted a considerable influence on mill design during the early part of the Industrial Revolution. Between 1753 and 1790 Smeaton constructed no fewer than forty-four mills.
    Meanwhile, in 1756 he had returned to Austhorpe, which continued to be his home base for the rest of his life. In 1767, as a result of the disappointing performance of an engine he had been involved with at New River Head, Islington, London, Smeaton began his important study of the steam-engine. Smeaton was the first to apply scientific principles to the steam-engine and achieved the most notable improvements in its efficiency since its invention by Newcomen, until its radical overhaul by James Watt. To compare the performance of engines quantitatively, he introduced the concept of "duty", i.e. the weight of water that could be raised 1 ft (30 cm) while burning one bushel (84 lb or 38 kg) of coal. The first engine to embody his improvements was erected at Long Benton colliery in Northumberland in 1772, with a duty of 9.45 million pounds, compared to the best figure obtained previously of 7.44 million pounds. One source of heat loss he attributed to inaccurate boring of the cylinder, which he was able to improve through his close association with Carron Ironworks near Falkirk, Scotland.
    [br]
    Principal Honours and Distinctions
    FRS 1753.
    Bibliography
    1759, "An experimental enquiry concerning the natural powers of water and wind to turn mills", Philosophical Transactions of the Royal Society.
    Towards the end of his life, Smeaton intended to write accounts of his many works but only completed A Narrative of the Eddystone Lighthouse, 1791, London.
    Further Reading
    S.Smiles, 1874, Lives of the Engineers: Smeaton and Rennie, London. A.W.Skempton, (ed.), 1981, John Smeaton FRS, London: Thomas Telford. L.T.C.Rolt and J.S.Allen, 1977, The Steam Engine of Thomas Newcomen, 2nd edn, Hartington: Moorland Publishing, esp. pp. 108–18 (gives a good description of his work on the steam-engine).
    LRD

    Biographical history of technology > Smeaton, John

  • 6 Adamson, Daniel

    [br]
    b. 1818 Shildon, Co. Durham, England
    d. January 1890 Didsbury, Manchester, England
    [br]
    English mechanical engineer, pioneer in the use of steel for boilers, which enabled higher pressures to be introduced; pioneer in the use of triple-and quadruple-expansion mill engines.
    [br]
    Adamson was apprenticed between 1835 and 1841 to Timothy Hackworth, then Locomotive Superintendent on the Stockton \& Darlington Railway. After this he was appointed Draughtsman, then Superintendent Engineer, at that railway's locomotive works until in 1847 he became Manager of Shildon Works. In 1850 he resigned and moved to act as General Manager of Heaton Foundry, Stockport. In the following year he commenced business on his own at Newton Moor Iron Works near Manchester, where he built up his business as an iron-founder and boilermaker. By 1872 this works had become too small and he moved to a 4 acre (1.6 hectare) site at Hyde Junction, Dukinfield. There he employed 600 men making steel boilers, heavy machinery including mill engines fitted with the American Wheelock valve gear, hydraulic plant and general millwrighting. His success was based on his early recognition of the importance of using high-pressure steam and steel instead of wrought iron. In 1852 he patented his type of flanged seam for the firetubes of Lancashire boilers, which prevented these tubes cracking through expansion. In 1862 he patented the fabrication of boilers by drilling rivet holes instead of punching them and also by drilling the holes through two plates held together in their assembly positions. He had started to use steel for some boilers he made for railway locomotives in 1857, and in 1860, only four years after Bessemer's patent, he built six mill engine boilers from steel for Platt Bros, Oldham. He solved the problems of using this new material, and by his death had made c.2,800 steel boilers with pressures up to 250 psi (17.6 kg/cm2).
    He was a pioneer in the general introduction of steel and in 1863–4 was a partner in establishing the Yorkshire Iron and Steel Works at Penistone. This was the first works to depend entirely upon Bessemer steel for engineering purposes and was later sold at a large profit to Charles Cammell \& Co., Sheffield. When he started this works, he also patented improvements both to the Bessemer converters and to the engines which provided their blast. In 1870 he helped to turn Lincolnshire into an important ironmaking area by erecting the North Lincolnshire Ironworks. He was also a shareholder in ironworks in South Wales and Cumberland.
    He contributed to the development of the stationary steam engine, for as early as 1855 he built one to run with a pressure of 150 psi (10.5 kg/cm) that worked quite satisfactorily. He reheated the steam between the cylinders of compound engines and then in 1861–2 patented a triple-expansion engine, followed in 1873 by a quadruple-expansion one to further economize steam. In 1858 he developed improved machinery for testing tensile strength and compressive resistance of materials, and in the same year patents for hydraulic lifting jacks and riveting machines were obtained.
    He was a founding member of the Iron and Steel Institute and became its President in 1888 when it visited Manchester. The previous year he had been President of the Institution of Civil Engineers when he was presented with the Bessemer Gold Medal. He was a constant contributor at the meetings of these associations as well as those of the Institution of Mechanical Engineers. He did not live to see the opening of one of his final achievements, the Manchester Ship Canal. He was the one man who, by his indomitable energy and skill at public speaking, roused the enthusiasm of the people in Manchester for this project and he made it a really practical proposition in the face of strong opposition.
    [br]
    Principal Honours and Distinctions
    President, Institution of Civil Engineers 1887.
    President, Iron and Steel Institute 1888. Institution of Civil Engineers Bessemer Gold Medal 1887.
    Further Reading
    Obituary, Engineer 69:56.
    Obituary, Engineering 49:66–8.
    H.W.Dickinson, 1938, A Short History of the Steam Engine, Cambridge University Press (provides an illustration of Adamson's flanged seam for boilers).
    R.L.Hills, 1989, Power from Steam. A History of the Stationary Steam Engine, Cambridge University Press (covers the development of the triple-expansion engine).
    RLH

    Biographical history of technology > Adamson, Daniel

  • 7 Murdock (Murdoch), William

    [br]
    b. 21 August 1754 Cumnock, Ayrshire, Scotland
    d. 15 November 1839 Handsworth, Birmingham, England
    [br]
    Scottish engineer and inventor, pioneer in coal-gas production.
    [br]
    He was the third child and the eldest of three boys born to John Murdoch and Anna Bruce. His father, a millwright and joiner, spelled his name Murdock on moving to England. He was educated for some years at Old Cumnock Parish School and in 1777, with his father, he built a "wooden horse", supposed to have been a form of cycle. In 1777 he set out for the Soho manufactory of Boulton \& Watt, where he quickly found employment, Boulton supposedly being impressed by the lad's hat. This was oval and made of wood, and young William had turned it himself on a lathe of his own manufacture. Murdock quickly became Boulton \& Watt's representative in Cornwall, where there was a flourishing demand for steam-engines. He lived at Redruth during this period.
    It is said that a number of the inventions generally ascribed to James Watt are in fact as much due to Murdock as to Watt. Examples are the piston and slide valve and the sun-and-planet gearing. A number of other inventions are attributed to Murdock alone: typical of these is the oscillating cylinder engine which obviated the need for an overhead beam.
    In about 1784 he planned a steam-driven road carriage of which he made a working model. He also planned a high-pressure non-condensing engine. The model carriage was demonstrated before Murdock's friends and travelled at a speed of 6–8 mph (10–13 km/h). Boulton and Watt were both antagonistic to their employees' developing independent inventions, and when in 1786 Murdock set out with his model for the Patent Office, having received no reply to a letter he had sent to Watt, Boulton intercepted him on the open road near Exeter and dissuaded him from going any further.
    In 1785 he married Mary Painter, daughter of a mine captain. She bore him four children, two of whom died in infancy, those surviving eventually joining their father at the Soho Works. Murdock was a great believer in pneumatic power: he had a pneumatic bell-push at Sycamore House, his home near Soho. The pattern-makers lathe at the Soho Works worked for thirty-five years from an air motor. He also conceived the idea of a vacuum piston engine to exhaust a pipe, later developed by the London Pneumatic Despatch Company's railway and the forerunner of the atmospheric railway.
    Another field in which Murdock was a pioneer was the gas industry. In 1791, in Redruth, he was experimenting with different feedstocks in his home-cum-office in Cross Street: of wood, peat and coal, he preferred the last. He designed and built in the backyard of his house a prototype generator, washer, storage and distribution plant, and publicized the efficiency of coal gas as an illuminant by using it to light his own home. In 1794 or 1795 he informed Boulton and Watt of his experimental work and of its success, suggesting that a patent should be applied for. James Watt Junior was now in the firm and was against patenting the idea since they had had so much trouble with previous patents and had been involved in so much litigation. He refused Murdock's request and for a short time Murdock left the firm to go home to his father's mill. Boulton \& Watt soon recognized the loss of a valuable servant and, in a short time, he was again employed at Soho, now as Engineer and Superintendent at the increased salary of £300 per year plus a 1 per cent commission. From this income, he left £14,000 when he died in 1839.
    In 1798 the workshops of Boulton and Watt were permanently lit by gas, starting with the foundry building. The 180 ft (55 m) façade of the Soho works was illuminated by gas for the Peace of Paris in June 1814. By 1804, Murdock had brought his apparatus to a point where Boulton \& Watt were able to canvas for orders. Murdock continued with the company after the death of James Watt in 1819, but retired in 1830 and continued to live at Sycamore House, Handsworth, near Birmingham.
    [br]
    Principal Honours and Distinctions
    Royal Society Rumford Gold Medal 1808.
    Further Reading
    S.Smiles, 1861, Lives of the Engineers, Vol. IV: Boulton and Watt, London: John Murray.
    H.W.Dickinson and R.Jenkins, 1927, James Watt and the Steam Engine, Oxford: Clarendon Press.
    J.A.McCash, 1966, "William Murdoch. Faithful servant" in E.G.Semler (ed.), The Great Masters. Engineering Heritage, Vol. II, London: Institution of Mechanical Engineers/Heinemann.
    IMcN

    Biographical history of technology > Murdock (Murdoch), William

  • 8 Murray, Matthew

    [br]
    b. 1765 near Newcastle upon Tyne, England
    d. 20 February 1826 Holbeck, Leeds, England
    [br]
    English mechanical engineer and steam engine, locomotive and machine-tool pioneer.
    [br]
    Matthew Murray was apprenticed at the age of 14 to a blacksmith who probably also did millwrighting work. He then worked as a journeyman mechanic at Stockton-on-Tees, where he had experience with machinery for a flax mill at Darlington. Trade in the Stockton area became slack in 1788 and Murray sought work in Leeds, where he was employed by John Marshall, who owned a flax mill at Adel, located about 5 miles (8 km) from Leeds. He soon became Marshall's chief mechanic, and when in 1790 a new mill was built in the Holbeck district of Leeds by Marshall and his partner Benyon, Murray was responsible for the installation of the machinery. At about this time he took out two patents relating to improvements in textile machinery.
    In 1795 he left Marshall's employment and, in partnership with David Wood (1761– 1820), established a general engineering and millwrighting business at Mill Green, Holbeck. In the following year the firm moved to a larger site at Water Lane, Holbeck, and additional capital was provided by two new partners, James Fenton (1754–1834) and William Lister (1796–1811). Lister was a sleeping partner and the firm was known as Fenton, Murray \& Wood and was organized so that Fenton kept the accounts, Wood was the administrator and took charge of the workshops, while Murray provided the technical expertise. The factory was extended in 1802 by the construction of a fitting shop of circular form, after which the establishment became known as the "Round Foundry".
    In addition to textile machinery, the firm soon began the manufacture of machine tools and steam-engines. In this field it became a serious rival to Boulton \& Watt, who privately acknowledged Murray's superior craftsmanship, particularly in foundry work, and resorted to some industrial espionage to discover details of his techniques. Murray obtained patents for improvements in steam engines in 1799, 1801 and 1802. These included automatic regulation of draught, a mechanical stoker and his short-D slide valve. The patent of 1801 was successfully opposed by Boulton \& Watt. An important contribution of Murray to the development of the steam engine was the use of a bedplate so that the engine became a compact, self-contained unit instead of separate components built into an en-gine-house.
    Murray was one of the first, if not the very first, to build machine tools for sale. However, this was not the case with the planing machine, which he is said to have invented to produce flat surfaces for his slide valves. Rather than being patented, this machine was kept secret, although it was apparently in use before 1814.
    In 1812 Murray was engaged by John Blenkinsop (1783–1831) to build locomotives for his rack railway from Middleton Colliery to Leeds (about 3 1/2 miles or 5.6 km). Murray was responsible for their design and they were fitted with two double-acting cylinders and cranks at right angles, an important step in the development of the steam locomotive. About six of these locomotives were built for the Middleton and other colliery railways and some were in use for over twenty years. Murray also supplied engines for many early steamboats. In addition, he built some hydraulic machinery and in 1814 patented a hydraulic press for baling cloth.
    Murray's son-in-law, Richard Jackson, later became a partner in the firm, which was then styled Fenton, Murray \& Jackson. The firm went out of business in 1843.
    [br]
    Principal Honours and Distinctions
    Society of Arts Gold Medal 1809 (for machine for hackling flax).
    Further Reading
    L.T.C.Rolt, 1962, Great Engineers, London (contains a good short biography).
    E.Kilburn Scott (ed.), 1928, Matthew Murray, Pioneer Engineer, Leeds (a collection of essays and source material).
    Year 1831, London.
    L.T.C.Rolt, 1965, Tools for the Job, London; repub. 1986 (provides information on Murray's machine-tool work).
    Some of Murray's correspondence with Simon Goodrich of the Admiralty has been published in Transactions of the Newcomen Society 3 (1922–3); 6(1925–6); 18(1937– 8); and 32 (1959–60).
    RTS

    Biographical history of technology > Murray, Matthew

  • 9 Bramah, Joseph

    [br]
    b. 2 April 1749 Stainborough, Yorkshire, England
    d. 9 December 1814 Pimlico, London, England
    [br]
    English inventor of the second patented water-closet, the beer-engine, the Bramah lock and, most important, the hydraulic press.
    [br]
    Bramah was the son of a tenant farmer and was educated at the village school before being apprenticed to a local carpenter, Thomas Allot. He walked to London c.1773 and found work with a Mr Allen that included the repair of some of the comparatively rare water-closets of the period. He invented and patented one of his own, which was followed by a water cock in 1783. His next invention, a greatly improved lock, involved the devising of a number of special machine tools, for it was one of the first devices involving interchangeable components in its manufacture. In this he had the help of Henry Maudslay, then a young and unknown engineer, who became Bramah's foreman before setting up business on his own. In 1784 he moved his premises from Denmark Street, St Giles, to 124 Piccadilly, which was later used as a showroom when he set up a factory in Pimlico. He invented an engine for putting out fires in 1785 and 1793, in effect a reciprocating rotary-vane pump. He undertook the refurbishment and modernization of Norwich waterworks c.1793, but fell out with Robert Mylne, who was acting as Consultant to the Norwich Corporation and had produced a remarkably vague specification. This was Bramah's only venture into the field of civil engineering.
    In 1797 he acted as an expert witness for Hornblower \& Maberley in the patent infringement case brought against them by Boulton and Watt. Having been cut short by the judge, he published his proposed evidence in "Letter to the Rt Hon. Sir James Eyre, Lord Chief Justice of the Common Pleas…etc". In 1795 he was granted his most important patent, based on Pascal's Hydrostatic Paradox, for the hydraulic press which also incorporated the concept of hydraulics for the transmission of both power and motion and was the foundation of the whole subsequent hydraulic industry. There is no truth in the oft-repeated assertion originating from Samuel Smiles's Industrial Biography (1863) that the hydraulic press could not be made to work until Henry Maudslay invented the self-sealing neck leather. Bramah used a single-acting upstroking ram, sealed only at its base with a U-leather. There was no need for a neck leather.
    He also used the concept of the weight-loaded, in this case as a public-house beer-engine. He devised machinery for carbonating soda water. The first banknote-numbering machine was of his design and was bought by the Bank of England. His development of a machine to cut twelve nibs from one goose quill started a patent specification which ended with the invention of the fountain pen, patented in 1809. His coach brakes were an innovation that was followed bv a form of hydropneumatic carriage suspension that was somewhat in advance of its time, as was his patent of 1812. This foresaw the introduction of hydraulic power mains in major cities and included the telescopic ram and the air-loaded accumulator.
    In all Joseph Bramah was granted eighteen patents. On 22 March 1813 he demonstrated a hydraulic machine for pulling up trees by the roots in Hyde Park before a large crowd headed by the Duke of York. Using the same machine in Alice Holt Forest in Hampshire to fell timber for ships for the Navy, he caught a chill and died soon after at his home in Pimlico.
    [br]
    Bibliography
    1778, British patent no. 1177 (water-closet). 1784, British patent no. 1430 (Bramah Lock). 1795, British patent no. 2045 (hydraulic press). 1809, British patent no. 3260 (fountain pen). 1812, British patent no. 3611.
    Further Reading
    I.McNeil, 1968, Joseph Bramah, a Century of Invention.
    S.Smiles, 1863, Industrial Biography.
    H.W.Dickinson, 1942, "Joseph Bramah and his inventions", Transactions of the Newcomen Society 22:169–86.
    IMcN

    Biographical history of technology > Bramah, Joseph

  • 10 Whitworth, Sir Joseph

    [br]
    b. 21 December 1803 Stockport, Cheshire, England
    d. 22 January 1887 Monte Carlo, Monaco
    [br]
    English mechanical engineer and pioneer of precision measurement.
    [br]
    Joseph Whitworth received his early education in a school kept by his father, but from the age of 12 he attended a school near Leeds. At 14 he joined his uncle's mill near Ambergate, Derbyshire, to learn the business of cotton spinning. In the four years he spent there he realized that he was more interested in the machinery than in managing a cotton mill. In 1821 he obtained employment as a mechanic with Crighton \& Co., Manchester. In 1825 he moved to London and worked for Henry Maudslay and later for the Holtzapffels and Joseph Clement. After these years spent gaining experience, he returned to Manchester in 1833 and set up in a small workshop under a sign "Joseph Whitworth, Tool Maker, from London".
    The business expanded steadily and the firm made machine tools of all types and other engineering products including steam engines. From 1834 Whitworth obtained many patents in the fields of machine tools, textile and knitting machinery and road-sweeping machines. By 1851 the company was generally regarded as the leading manufacturer of machine tools in the country. Whitworth was a pioneer of precise measurement and demonstrated the fundamental mode of producing a true plane by making surface plates in sets of three. He advocated the use of the decimal system and made use of limit gauges, and he established a standard screw thread which was adopted as the national standard. In 1853 Whitworth visited America as a member of a Royal Commission and reported on American industry. At the time of the Crimean War in 1854 he was asked to provide machinery for manufacturing rifles and this led him to design an improved rifle of his own. Although tests in 1857 showed this to be much superior to all others, it was not adopted by the War Office. Whitworth's experiments with small arms led on to the construction of big guns and projectiles. To improve the quality of the steel used for these guns, he subjected the molten metal to pressure during its solidification, this fluid-compressed steel being then known as "Whitworth steel".
    In 1868 Whitworth established thirty annual scholarships for engineering students. After his death his executors permanently endowed the Whitworth Scholarships and distributed his estate of nearly half a million pounds to various educational and charitable institutions. Whitworth was elected an Associate of the Institution of Civil Engineers in 1841 and a Member in 1848 and served on its Council for many years. He was elected a Member of the Institution of Mechanical Engineers in 1847, the year of its foundation.
    [br]
    Principal Honours and Distinctions
    Baronet 1869. FRS 1857. President, Institution of Mechanical Engineers 1856, 1857 and 1866. Hon. LLD Trinity College, Dublin, 1863. Hon. DCL Oxford University 1868. Member of the Smeatonian Society of Civil Engineers 1864. Légion d'honneur 1868. Society of Arts Albert Medal 1868.
    Bibliography
    1858, Miscellaneous Papers on Mechanical Subjects, London; 1873, Miscellaneous Papers on Practical Subjects: Guns and Steel, London (both are collections of his papers to technical societies).
    1854, with G.Wallis, The Industry of the United States in Machinery, Manufactures, and
    Useful and Ornamental Arts, London.
    Further Reading
    F.C.Lea, 1946, A Pioneer of Mechanical Engineering: Sir Joseph Whitworth, London (a short biographical account).
    A.E.Musson, 1963, "Joseph Whitworth: toolmaker and manufacturer", Engineering Heritage, Vol. 1, London, 124–9 (a short biography).
    D.J.Jeremy (ed.), 1984–6, Dictionary of Business Biography, Vol. 5, London, 797–802 (a short biography).
    W.Steeds, 1969, A History of Machine Tools 1700–1910, Oxford (describes Whitworth's machine tools).
    RTS

    Biographical history of technology > Whitworth, Sir Joseph

  • 11 Brunel, Isambard Kingdom

    [br]
    b. 9 April 1806 Portsea, Hampshire, England
    d. 15 September 1859 18 Duke Street, St James's, London, England
    [br]
    English civil and mechanical engineer.
    [br]
    The son of Marc Isambard Brunel and Sophia Kingdom, he was educated at a private boarding-school in Hove. At the age of 14 he went to the College of Caen and then to the Lycée Henri-Quatre in Paris, after which he was apprenticed to Louis Breguet. In 1822 he returned from France and started working in his father's office, while spending much of his time at the works of Maudslay, Sons \& Field.
    From 1825 to 1828 he worked under his father on the construction of the latter's Thames Tunnel, occupying the position of Engineer-in-Charge, exhibiting great courage and presence of mind in the emergencies which occurred not infrequently. These culminated in January 1828 in the flooding of the tunnel and work was suspended for seven years. For the next five years the young engineer made abortive attempts to find a suitable outlet for his talents, but to little avail. Eventually, in 1831, his design for a suspension bridge over the River Avon at Clifton Gorge was accepted and he was appointed Engineer. (The bridge was eventually finished five years after Brunel's death, as a memorial to him, the delay being due to inadequate financing.) He next planned and supervised improvements to the Bristol docks. In March 1833 he was appointed Engineer of the Bristol Railway, later called the Great Western Railway. He immediately started to survey the route between London and Bristol that was completed by late August that year. On 5 July 1836 he married Mary Horsley and settled into 18 Duke Street, Westminster, London, where he also had his office. Work on the Bristol Railway started in 1836. The foundation stone of the Clifton Suspension Bridge was laid the same year. Whereas George Stephenson had based his standard railway gauge as 4 ft 8½ in (1.44 m), that or a similar gauge being usual for colliery wagonways in the Newcastle area, Brunel adopted the broader gauge of 7 ft (2.13 m). The first stretch of the line, from Paddington to Maidenhead, was opened to traffic on 4 June 1838, and the whole line from London to Bristol was opened in June 1841. The continuation of the line through to Exeter was completed and opened on 1 May 1844. The normal time for the 194-mile (312 km) run from Paddington to Exeter was 5 hours, at an average speed of 38.8 mph (62.4 km/h) including stops. The Great Western line included the Box Tunnel, the longest tunnel to that date at nearly two miles (3.2 km).
    Brunel was the engineer of most of the railways in the West Country, in South Wales and much of Southern Ireland. As railway networks developed, the frequent break of gauge became more of a problem and on 9 July 1845 a Royal Commission was appointed to look into it. In spite of comparative tests, run between Paddington-Didcot and Darlington-York, which showed in favour of Brunel's arrangement, the enquiry ruled in favour of the narrow gauge, 274 miles (441 km) of the former having been built against 1,901 miles (3,059 km) of the latter to that date. The Gauge Act of 1846 forbade the building of any further railways in Britain to any gauge other than 4 ft 8 1/2 in (1.44 m).
    The existence of long and severe gradients on the South Devon Railway led to Brunel's adoption of the atmospheric railway developed by Samuel Clegg and later by the Samuda brothers. In this a pipe of 9 in. (23 cm) or more in diameter was laid between the rails, along the top of which ran a continuous hinged flap of leather backed with iron. At intervals of about 3 miles (4.8 km) were pumping stations to exhaust the pipe. Much trouble was experienced with the flap valve and its lubrication—freezing of the leather in winter, the lubricant being sucked into the pipe or eaten by rats at other times—and the experiment was abandoned at considerable cost.
    Brunel is to be remembered for his two great West Country tubular bridges, the Chepstow and the Tamar Bridge at Saltash, with the latter opened in May 1859, having two main spans of 465 ft (142 m) and a central pier extending 80 ft (24 m) below high water mark and allowing 100 ft (30 m) of headroom above the same. His timber viaducts throughout Devon and Cornwall became a feature of the landscape. The line was extended ultimately to Penzance.
    As early as 1835 Brunel had the idea of extending the line westwards across the Atlantic from Bristol to New York by means of a steamship. In 1836 building commenced and the hull left Bristol in July 1837 for fitting out at Wapping. On 31 March 1838 the ship left again for Bristol but the boiler lagging caught fire and Brunel was injured in the subsequent confusion. On 8 April the ship set sail for New York (under steam), its rival, the 703-ton Sirius, having left four days earlier. The 1,340-ton Great Western arrived only a few hours after the Sirius. The hull was of wood, and was copper-sheathed. In 1838 Brunel planned a larger ship, some 3,000 tons, the Great Britain, which was to have an iron hull.
    The Great Britain was screwdriven and was launched on 19 July 1843,289 ft (88 m) long by 51 ft (15.5 m) at its widest. The ship's first voyage, from Liverpool to New York, began on 26 August 1845. In 1846 it ran aground in Dundrum Bay, County Down, and was later sold for use on the Australian run, on which it sailed no fewer than thirty-two times in twenty-three years, also serving as a troop-ship in the Crimean War. During this war, Brunel designed a 1,000-bed hospital which was shipped out to Renkioi ready for assembly and complete with shower-baths and vapour-baths with printed instructions on how to use them, beds and bedding and water closets with a supply of toilet paper! Brunel's last, largest and most extravagantly conceived ship was the Great Leviathan, eventually named The Great Eastern, which had a double-skinned iron hull, together with both paddles and screw propeller. Brunel designed the ship to carry sufficient coal for the round trip to Australia without refuelling, thus saving the need for and the cost of bunkering, as there were then few bunkering ports throughout the world. The ship's construction was started by John Scott Russell in his yard at Millwall on the Thames, but the building was completed by Brunel due to Russell's bankruptcy in 1856. The hull of the huge vessel was laid down so as to be launched sideways into the river and then to be floated on the tide. Brunel's plan for hydraulic launching gear had been turned down by the directors on the grounds of cost, an economy that proved false in the event. The sideways launch with over 4,000 tons of hydraulic power together with steam winches and floating tugs on the river took over two months, from 3 November 1857 until 13 January 1858. The ship was 680 ft (207 m) long, 83 ft (25 m) beam and 58 ft (18 m) deep; the screw was 24 ft (7.3 m) in diameter and paddles 60 ft (18.3 m) in diameter. Its displacement was 32,000 tons (32,500 tonnes).
    The strain of overwork and the huge responsibilities that lay on Brunel began to tell. He was diagnosed as suffering from Bright's disease, or nephritis, and spent the winter travelling in the Mediterranean and Egypt, returning to England in May 1859. On 5 September he suffered a stroke which left him partially paralysed, and he died ten days later at his Duke Street home.
    [br]
    Further Reading
    L.T.C.Rolt, 1957, Isambard Kingdom Brunel, London: Longmans Green. J.Dugan, 1953, The Great Iron Ship, Hamish Hamilton.
    IMcN

    Biographical history of technology > Brunel, Isambard Kingdom

  • 12 Herbert, Edward Geisler

    [br]
    b. 23 March 1869 Dedham, near Colchester, Essex, England
    d. 9 February 1938 West Didsbury, Manchester, England
    [br]
    English engineer, inventor of the Rapidor saw and the Pendulum Hardness Tester, and pioneer of cutting tool research.
    [br]
    Edward Geisler Herbert was educated at Nottingham High School in 1876–87, and at University College, London, in 1887–90, graduating with a BSc in Physics in 1889 and remaining for a further year to take an engineering course. He began his career as a premium apprentice at the Nottingham works of Messrs James Hill \& Co, manufacturers of lace machinery. In 1892 he became a partner with Charles Richardson in the firm of Richardson \& Herbert, electrical engineers in Manchester, and when this partnership was dissolved in 1895 he carried on the business in his own name and began to produce machine tools. He remained as Managing Director of this firm, reconstituted in 1902 as a limited liability company styled Edward G.Herbert Ltd, until his retirement in 1928. He was joined by Charles Fletcher (1868–1930), who as joint Managing Director contributed greatly to the commercial success of the firm, which specialized in the manufacture of small machine tools and testing machinery.
    Around 1900 Herbert had discovered that hacksaw machines cut very much quicker when only a few teeth are in operation, and in 1902 he patented a machine which utilized this concept by automatically changing the angle of incidence of the blade as cutting proceeded. These saws were commercially successful, but by 1912, when his original patents were approaching expiry, Herbert and Fletcher began to develop improved methods of applying the rapid-saw concept. From this work the well-known Rapidor and Manchester saws emerged soon after the First World War. A file-testing machine invented by Herbert before the war made an autographic record of the life and performance of the file and brought him into close contact with the file and tool steel manufacturers of Sheffield. A tool-steel testing machine, working like a lathe, was introduced when high-speed steel had just come into general use, and Herbert became a prominent member of the Cutting Tools Research Committee of the Institution of Mechanical Engineers in 1919, carrying out many investigations for that body and compiling four of its Reports published between 1927 and 1933. He was the first to conceive the idea of the "tool-work" thermocouple which allowed cutting tool temperatures to be accurately measured. For this advance he was awarded the Thomas Hawksley Gold Medal of the Institution in 1926.
    His best-known invention was the Pendulum Hardness Tester, introduced in 1923. This used a spherical indentor, which was rolled over, rather than being pushed into, the surface being examined, by a small, heavy, inverted pendulum. The period of oscillation of this pendulum provided a sensitive measurement of the specimen's hardness. Following this work Herbert introduced his "Cloudburst" surface hardening process, in which hardened steel engineering components were bombarded by steel balls moving at random in all directions at very high velocities like gaseous molecules. This treatment superhardened the surface of the components, improved their resistance to abrasion, and revealed any surface defects. After bombardment the hardness of the superficially hardened layers increased slowly and spontaneously by a room-temperature ageing process. After his retirement in 1928 Herbert devoted himself to a detailed study of the influence of intense magnetic fields on the hardening of steels.
    Herbert was a member of several learned societies, including the Manchester Association of Engineers, the Institute of Metals, the American Society of Mechanical Engineers and the Institution of Mechanical Engineers. He retained a seat on the Board of his company from his retirement until the end of his life.
    [br]
    Principal Honours and Distinctions
    Manchester Association of Engineers Butterworth Gold Medal 1923. Institution of Mechanical Engineers Thomas Hawksley Gold Medal 1926.
    Bibliography
    E.G.Herbert obtained several British and American patents and was the author of many papers, which are listed in T.M.Herbert (ed.), 1939, "The inventions of Edward Geisler Herbert: an autobiographical note", Proceedings of the Institution of Mechanical Engineers 141: 59–67.
    ASD / RTS

    Biographical history of technology > Herbert, Edward Geisler

  • 13 Unwin, William Cawthorne

    [br]
    b. 12 December 1838 Coggeshall, near Colchester, Essex, England d. 1933
    [br]
    English engineer and educator.
    [br]
    Unwin made an important contribution to the establishment of engineering at the University of London. His family were of Huguenot stock, and his father was a Congregational minister. Unwin was educated at the City of London Corporation School and at New College, St John's Wood. At a time when the older universities were still effectively closed to Dissenters, he matriculated with Honours in Chemistry in the London University Matriculation Examination in 1858, and he subsequently graduated BSc from London in 1861. He served as Scientific Assistant to William Fairbairn in Manchester from 1856 to 1862, going on to manage engineering work of various sorts. He was appointed Instructor at the Royal School of Naval Architecture and Marine Engineering (1869–72), and then he became Professor of Hydraulics and Mechanical Engineering at the Royal Indian Engineering College (1872–84). From 1884 to 1904 he was Professor of Civil and Mechanical Engineering at the Central Institution of the City \& Guilds of London, which was incorporated into the University of London in 1900. Unwin's research interests included hydraulics and water power, which led to him taking a leading part in the Niagara Falls hydroelectric scheme; the strength of materials, involving the stability of masonry dams; and the development of the internal combustion engine.
    [br]
    Principal Honours and Distinctions
    FRS 1886.
    Further Reading
    DNB Supplement.
    E.G.Walker, 1938, Lift and Work of William Cawthorne Unwin.
    AB

    Biographical history of technology > Unwin, William Cawthorne

  • 14 Bollée, Ernest-Sylvain

    [br]
    b. 19 July 1814 Clefmont (Haute-Marne), France
    d. 11 September 1891 Le Mans, France
    [br]
    French inventor of the rotor-stator wind engine and founder of the Bollée manufacturing industry.
    [br]
    Ernest-Sylvain Bollée was the founder of an extensive dynasty of bellfounders based in Le Mans and in Orléans. He and his three sons, Amédée (1844–1917), Ernest-Sylvain fils (1846–1917) and Auguste (1847-?), were involved in work and patents on steam-and petrol-driven cars, on wind engines and on hydraulic rams. The presence of the Bollées' car industry in Le Mans was a factor in the establishment of the car races that are held there.
    In 1868 Ernest-Sylvain Bollée père took out a patent for a wind engine, which at that time was well established in America and in England. In both these countries, variable-shuttered as well as fixed-blade wind engines were in production and patented, but the Ernest-Sylvain Bollée patent was for a type of wind engine that had not been seen before and is more akin to the water-driven turbine of the Jonval type, with its basic principle being parallel to the "rotor" and "stator". The wind drives through a fixed ring of blades on to a rotating ring that has a slightly greater number of blades. The blades of the fixed ring are curved in the opposite direction to those on the rotating blades and thus the air is directed onto the latter, causing it to rotate at a considerable speed: this is the "rotor". For greater efficiency a cuff of sheet iron can be attached to the "stator", giving a tunnel effect and driving more air at the "rotor". The head of this wind engine is turned to the wind by means of a wind-driven vane mounted in front of the blades. The wind vane adjusts the wind angle to enable the wind engine to run at a constant speed.
    The fact that this wind engine was invented by the owner of a brass foundry, with all the gear trains between the wind vane and the head of the tower being of the highest-quality brass and, therefore, small in scale, lay behind its success. Also, it was of prefabricated construction, so that fixed lengths of cast-iron pillar were delivered, complete with twelve treads of cast-iron staircase fixed to the outside and wrought-iron stays. The drive from the wind engine was taken down the inside of the pillar to pumps at ground level.
    Whilst the wind engines were being built for wealthy owners or communes, the work of the foundry continued. The three sons joined the family firm as partners and produced several steam-driven vehicles. These vehicles were the work of Amédée père and were l'Obéissante (1873); the Autobus (1880–3), of which some were built in Berlin under licence; the tram Bollée-Dalifol (1876); and the private car La Mancelle (1878). Another important line, in parallel with the pumping mechanism required for the wind engines, was the development of hydraulic rams, following the Montgolfier patent. In accordance with French practice, the firm was split three ways when Ernest-Sylvain Bollée père died. Amédée père inherited the car side of the business, but it is due to Amédée fils (1867– 1926) that the principal developments in car manufacture came into being. He developed the petrol-driven car after the impetus given by his grandfather, his father and his uncle Ernest-Sylvain fils. In 1887 he designed a four-stroke single-cylinder engine, although he also used engines designed by others such as Peugeot. He produced two luxurious saloon cars before putting Torpilleur on the road in 1898; this car competed in the Tour de France in 1899. Whilst designing other cars, Amédée's son Léon (1870–1913) developed the Voiturette, in 1896, and then began general manufacture of small cars on factory lines. The firm ceased work after a merger with the English firm of Morris in 1926. Auguste inherited the Eolienne or wind-engine side of the business; however, attracted to the artistic life, he sold out to Ernest Lebert in 1898 and settled in the Paris of the Impressionists. Lebert developed the wind-engine business and retained the basic "stator-rotor" form with a conventional lattice tower. He remained in Le Mans, carrying on the business of the manufacture of wind engines, pumps and hydraulic machinery, describing himself as a "Civil Engineer".
    The hydraulic-ram business fell to Ernest-Sylvain fils and continued to thrive from a solid base of design and production. The foundry in Le Mans is still there but, more importantly, the bell foundry of Dominique Bollée in Saint-Jean-de-Braye in Orléans is still at work casting bells in the old way.
    [br]
    Further Reading
    André Gaucheron and J.Kenneth Major, 1985, The Eolienne Bollée, The International Molinological Society.
    Cénomane (Le Mans), 11, 12 and 13 (1983 and 1984).
    KM

    Biographical history of technology > Bollée, Ernest-Sylvain

  • 15 Donkin, Bryan III

    [br]
    b. 29 August 1835 London, England
    d. 4 March 1902 Brussels, Belgium
    [br]
    English mechanical engineer.
    [br]
    Bryan Donkin was the eldest son of John Donkin (1802–54) and grandson of Bryan Donkin I (1768–1855). He was educated at University College, London, and at the Ecole Centrale des Arts et Métiers in Paris, and then served an apprenticeship in the firm established by his grandfather. He assisted his uncle, Bryan Donkin II (1809–93), in setting up paper mills at St Petersburg. He became a partner in the Donkin firm in 1868 and Chairman in 1889, and retained this position after the amalgamation with Clench \& Co. of Chesterfield in 1900. Bryan Donkin was one of the first engineers to carry out scientific tests on steam engines and boilers, the results of his experiments being reported in many papers to the engineering institutions. In the 1890s his interests extended to the internal-combustion engine and he translated Rudolf Diesel's book Theory and Construction of a Rational Heat Motor. He was a frequent contributor to the weekly journal The Engineer. He was a member of the Institution of Civil Engineers and of the Institution of Mechanical Engineers, as well as of many other societies, including the Royal Institution, the American Society of Mechanical Engineers, the Société Industrielle de Mulhouse and the Verein Deutscher Ingenieure. In his experimental work he often collaborated with others, notably Professor A.B.W.Kennedy (1847–1928), with whom he was also associated in the consulting engineering firm of Kennedy \& Donkin.
    [br]
    Principal Honours and Distinctions
    Vice-President, Institution of Mechanical Engineers 1901. Institution of Civil Engineers, Telford premiums 1889, 1891; Watt Medal 1894; Manby premium 1896.
    Bibliography
    1894, Gas, Oil and Air Engines, London.
    1896, with A.B.W.Kennedy, Experiments on Steam Boilers, London. 1898, Heat Efficiency of Steam Boilers, London.
    RTS

    Biographical history of technology > Donkin, Bryan III

  • 16 Field, Joshua

    [br]
    b. 1786 Hackney, London, England
    d. 11 August 1863 Balham Hill, Surrey, England
    [br]
    English mechanical engineer, co-founder of the Institution of Civil Engineers.
    [br]
    Joshua Field was educated at a boarding school in Essex until the age of 16, when he obtained employment at the Royal Dockyards at Portsmouth under the Chief Mechanical Superintendent, Simon Goodrich (1773–1847), and later in the drawing office at the Admiralty in Whitehall. At this time, machinery for the manufacture of ships' blocks was being made for the Admiralty by Henry Maudslay, who was in need of a competent draughtsman, and Goodrich recommended Joshua Field. This was the beginning of Field's long association with Maudslay; he later became a partner in the firm which was for many years known as Maudslay, Sons \& Field. They undertook a variety of mechanical engineering work but were renowned for marine steam engines, with Field being responsible for much of the design work in the early years. Joshua Field was the eldest of the eight young men who in 1818 founded the Institution of Civil Engineers; he was the first Chairman of the Institution and later became a vice-president. He was the only one of the founders to be elected President and was the first mechanical engineer to hold that office. James Nasmyth in his autobiography relates that Joshua Field kept a methodical account of his technical discussions in a series of note books which were later indexed. Some of these diaries have survived, and extracts from the notes he made on a tour of the industrial areas of the Midlands and the North West in 1821 have been published.
    [br]
    Principal Honours and Distinctions
    FRS 1836. President, Institution of Civil Engineers 1848–9. Member, Smeatonian Society of Civil Engineers 1835; President 1848.
    Bibliography
    1925–6, "Joshua Field's diary of a tour in 1821 through the Midlands", introd. and notes J.W.Hall, Transactions of the Newcomen Society 6:1–41.
    1932–3, "Joshua Field's diary of a tour in 1821 through the provinces", introd. and notes E.C. Smith, Transactions of the Newcomen Society 13:15–50.
    RTS

    Biographical history of technology > Field, Joshua

  • 17 Taylor, William

    [br]
    b. 11 June 1865 London, England
    d. 28 February 1937 Laughton, Leicestershire, England
    [br]
    English mechanical engineer and metrologist, originator of standard screw threads for lens mountings and inventor of "Dimple" golf balls.
    [br]
    William Taylor served an apprenticeship from 1880 to 1885 in London with Paterson and Cooper, electrical engineers and instrument makers. He studied at the Finsbury Technical College under Professors W.E.Ayrton (1847–1908) and John Perry (1850–1920). He remained with Paterson and Cooper until 1887, when he joined his elder brother, who had set up in Leicester as a manufacturer of optical instruments. The firm was then styled T.S. \& W.Taylor and a few months later, when H.W.Hobson joined them as a partner, it became Taylor, Taylor and Hobson, as it was known for many years.
    William Taylor was mainly responsible for technical developments in the firm and he designed the special machine tools required for making lenses and their mountings. However, his most notable work was in originating methods of measuring and gauging screw threads. He proposed a standard screw-thread for lens mountings that was adopted by the Royal Photographic Society, and he served on screw thread committees of the British Standards Institution and the British Association. His interest in golf led him to study the flight of the golf ball, and he designed and patented the "Dimple" golf ball and a mechanical driving machine for testing golf balls.
    He was an active member of the Institution of Mechanical Engineers, being elected Associate Member in 1894, Member in 1901 and Honorary Life Member in 1936. He served on the Council from 1918 and was President in 1932. He took a keen interest in engineering education and advocated the scientific study of materials, processes and machine tools, and of management. His death occurred suddenly while he was helping to rescue his son's car from a snowdrift.
    [br]
    Principal Honours and Distinctions
    OBE 1918. FRS 1934. President, Institution of Mechanical Engineers 1932.
    Further Reading
    K.J.Hume, 1980, A History of Engineering Metrology, London, 110–21 (a short account of William Taylor and of Taylor, Taylor and Hobson).
    RTS

    Biographical history of technology > Taylor, William

  • 18 Bodmer, Johann Georg

    [br]
    b. 9 December 1786 Zurich, Switzerland
    d. 30 May 1864 Zurich, Switzerland
    [br]
    Swiss mechanical engineer and inventor.
    [br]
    John George Bodmer (as he was known in England) showed signs of great inventive ability even as a child. Soon after completing his apprenticeship to a local millwright, he set up his own work-shop at Zussnacht. One of his first inventions, in 1805, was a shell which exploded on impact. Soon after this he went into partnership with Baron d'Eichthal to establish a cotton mill at St Blaise in the Black Forest. Bodmer designed the water-wheels and all the machinery. A few years later they established a factory for firearms and Bodmer designed special machine tools and developed a system of interchangeable manufacture comparable with American developments at that time. More inventions followed, including a detachable bayonet for breech-loading rifles and a rifled, breech-loading cannon for 12 lb (5.4 kg) shells.
    Bodmer was appointed by the Grand Duke of Baden to the posts of Director General of the Government Iron Works and Inspector of Artillery. He left St Blaise in 1816 and entered completely into the service of the Grand Duke, but before taking up his duties he visited Britain for the first time and made an intensive five-month tour of textile mills, iron works, workshops and similar establishments.
    In 1821 he returned to Switzerland and was engaged in setting up cotton mills and other engineering works. In 1824 he went back to England, where he obtained a patent for his improvements in cotton machinery and set up a mill near Bolton incorporating his ideas. His health failing, he was obliged to return to Switzerland in 1828, but he was soon busy with engineering works there and in France. In 1833 he went to England again, first to Bolton and four years later to Manchester in partnership with H.H.Birley. In the next ten years he patented many more inventions in the fields of textile machinery, steam engines and machine tools. These included a balanced steam engine, a mechanical stoker, steam engine valve gear, gear-cutting machines and a circular planer or vertical lathe, anticipating machines of this type later developed in America by E.P. Bullard. The metric system was used in his workshops and in gearing calculations he introduced the concept of diametral pitch, which then became known as "Manchester Pitch". The balanced engine was built in stationary form and in two locomotives, but although their running was remarkably smooth the additional complication prevented their wider use.
    After the death of H.H.Birley in 1846, Bodmer removed to London until 1848, when he went to Austria. About 1860 he returned to his native town of Zurich. He remained actively engaged in all kinds of inventions up to the end of his life. He obtained fourteen British patents, each of which describes many inventions; two of these patents were extended beyond the normal duration of fourteen years. Two others were obtained on his behalf, one by his brother James in 1813 for his cannon and one relating to railways by Charles Fox in 1847. Many of his inventions had little direct influence but anticipated much later developments. His ideas were sound and some of his engines and machine tools were in use for over sixty years. He was elected a Member of the Institution of Civil Engineers in 1835.
    [br]
    Bibliography
    1845, "The advantages of working stationary and marine engines with high-pressure steam, expansively and at great velocities; and of the compensating, or double crank system", Minutes of the Proceedings of the Institution of Civil Engineers 4:372–99.
    1846, "On the combustion of fuel in furnaces and steam-boilers, with a description of Bodmer's fire-grate", Minutes of the Proceedings of the Institution of Civil Engineers 5:362–8.
    Further Reading
    H.W.Dickinson, 1929–30, "Diary of John George Bodmer, 1816–17", Transactions of the Newcomen Society 10:102–14.
    D.Brownlie, 1925–6, John George Bodmer, his life and work, particularly in relation to the evolution of mechanical stoking', Transactions of the Newcomen Society 6:86–110.
    W.O.Henderson (ed.), 1968, Industrial Britain Under the Regency: The Diaries of Escher, Bodmer, May and de Gallois 1814–1818, London: Frank Cass (a more complete account of his visit to Britain).
    RTS

    Biographical history of technology > Bodmer, Johann Georg

  • 19 Thomson, James

    [br]
    b. 16 February 1822 Belfast, Ireland (now Northern Ireland)
    d. 8 May 1892 Glasgow, Scotland
    [br]
    Irish civil engineer noted for his work in hydraulics and for his design of the "Vortex" turbine.
    [br]
    James Thomson was a pupil in several civil-engineering offices, but the nature of the work was beyond his physical capacity and from 1843 onwards he devoted himself to theoretical studies. Hhe first concentrated on the problems associated with the expansion of liquids when they reach their freezing point: water is one such example. He continued this work with his younger brother, Lord Kelvin (see Thomson, Sir William).
    After experimentation with a "feathered" paddle wheel as a young man, he turned his attention to water power. In 1850 he made his first patent application, "Hydraulic machinery and steam engines": this patent became his "Vortex" turbine design. He settled in Belfast, the home of the MacAdam-Fourneyron turbine, in 1851, and as a civil engineer became the Resident Engineer to the Belfast Water Commissioners in 1853. In 1857 he was appointed Professor of Civil Engineering and Surveying at Queen's College, Belfast.
    Whilst it is understood that he made his first turbine models in Belfast, he came to an arrangement with the Williamson Brothers of Kendal to make his turbine. In 1856 Williamsons produced their first turbine to Thomson's design and drawings. This was the Vortex Williamson Number 1, which produced 5 hp (3.7 kW) under a fall of 31 ft (9.4 m) on a 9 in. (23 cm) diameter supply. The rotor of this turbine ran in a horizontal plane. For several years the Williamson catalogue described their Vortex turbine as "designed by Professor James Thomson".
    Thomson continued with his study of hydraulics and water flow both at Queen's College, Belfast, and, later, at Glasgow University, where he became Professor in 1873, succeeding Macquorn Rankine, another famous engineer. At Glasgow, James Thomson studied the flow in rivers and the effects of erosion on river beds. He was also an authority on geological formations such as the development of the basalt structure of the Giant's Causeway, north of Belfast.
    James Thomson was an extremely active engineer and a very profound teacher of civil engineering. His form of water turbine had a long life before being displaced by the turbines designed in the twentieth century.
    [br]
    Bibliography
    1850, British patent no. 13,156 "Hydraulic machinery and steam engines".
    Further Reading
    Gilkes, 1956, One Hundred Years of Water Power, Kendal.
    KM

    Biographical history of technology > Thomson, James

  • 20 Herbert, Sir Alfred Edward

    [br]
    b. 5 September 1866 Leicester, England
    d. 26 May 1957 Kings Somborne, Hampshire, England
    [br]
    English mechanical engineer and machine-tool manufacturer.
    [br]
    Alfred Herbert was educated at Stoneygate School, Leicester, and served an apprenticeship with Joseph Jessop \& Sons, also of Leicester, from 1881 to 1886. In 1887 he was engaged as Manager of a small engineering firm in Coventry, and before the end of that year he purchased the business in partnership with William Hubbard. They commenced the manufacture of machine-tools especially for the cycle industry. Hubbard withdrew from the partnership in 1890 and Herbert continued on his own account, the firm being established as a limited liability company, Alfred Herbert Ltd, in 1894. A steady expansion of the business continued, especially after the introduction of their capstan lathe, and by 1914 it was the largest manufacturer of machine-tools in Britain. In addition to making machine-tools of all types for the home and export market, the firm acted as an agent for the import of specialist machine-tools from abroad. During the First World War Alfred Herbert was in 1915 appointed head of machine-tool production at the War Office and when the Ministry of Munitions was set up he was transferred to that Ministry as Controller of Machine Tools. He was President of the Machine Tools Trades Association from 1919 to 1934. He was elected a member of the Institution of Mechanical Engineers in 1892 and in 1921 was a founder member of the Institution of Production Engineers. Almost to the end of his long life he continued to take an active part in the direction of his company. He expressed his views on current events affecting industry in the technical press and in his firm's house journal.
    [br]
    Principal Honours and Distinctions
    KBE 1917. Officier de la Légion d'honneur 1917. Order of St Stanislas of Russia 1918. Order of Leopold of Belgium 1918. Freeman of the City of Coventry 1933. President, Institution of Production Engineers 1927–9. Honorary Member, Institution of Mechanical Engineers 1941.
    Bibliography
    1948, Shots at the Truth, Coventry (a selection of his speeches and writings).
    Further Reading
    D.J.Jeremy (ed.), 1984–6, Dictionary of Business Biography, Vol. 3, London, pp. 174–7 (a useful account).
    Obituary, 1957, Engineering, 183:680.
    RTS

    Biographical history of technology > Herbert, Sir Alfred Edward

См. также в других словарях:

  • Mechanical powder press — Contents 1 Function Principles of mechanical presses in the field of Technical Ceramics 2 Application Advantages in the field of Technical Ceramics 3 Context between ceramic compaction …   Wikipedia

  • Mechanical system — This article is about systems that manage mechanical movement. For other uses, see Machine (disambiguation). A mechanical system manages power to accomplish a task that involves forces and movement. Mechanical is derived from the Latin word… …   Wikipedia

  • Control engineering — Control systems play a critical role in space flight Control engineering or Control systems engineering is the engineering discipline that applies control theory to design systems with predictable behaviors. The practice uses sensors to measure… …   Wikipedia

  • Pneumatic valve springs — are metal bellows filled with compressed airCitation last = Scarborough first = Craig author link = last2 = first2 = author2 link = title = F1 Engines Valve technology date = year = url = http://scarbsf1.com/valves.html accessdate = 2007 03 05 ]… …   Wikipedia

  • tunnels and underground excavations — ▪ engineering Introduction        Great tunnels of the world Great tunnels of the worldhorizontal underground passageway produced by excavation or occasionally by nature s action in dissolving a soluble rock, such as limestone. A vertical opening …   Universalium

  • canals and inland waterways — ▪ waterway Introduction       natural or artificial waterways used for navigation, crop irrigation, water supply, or drainage.       Despite modern technological advances in air and ground transportation, inland waterways continue to fill a vital …   Universalium

  • Chuck (engineering) — Self centering three jaw chuck and key with one jaw removed and inverted showing the teeth that engage in the scroll plate. The scroll plate is rotated within the chuck body by the key, the scroll engages the teeth on the underside of the jaws… …   Wikipedia

  • Technological and industrial history of Canada — The technological and industrial history of Canada encompasses the country s development in the areas of transportation, communication, energy, materials, public works, public services (health care), domestic/consumer and defense technologies.… …   Wikipedia

  • harbours and sea works — Introduction harbour also spelled  harbor        any part of a body of water and the manmade structures surrounding it that sufficiently shelters a vessel from wind, waves, and currents, enabling safe anchorage or the discharge and loading of… …   Universalium

  • Lockout-Tagout — and placing it in such a position that no hazardous power sources can be turned on. The procedure requires that a tag be affixed to the locked device indicating that it should not be turned on.When two or more subcontractors are working on… …   Wikipedia

  • Shock absorber — Gas damper A shock absorber is a mechanical device designed to smooth out or damp shock impulse, and dissipate kinetic energy. It is a type of dashpot. Contents …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»